Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Abdullah Aydın, ${ }^{\text {a }}$ Tíjen Önkol, ${ }^{\text {b }}$ Cengíz Arıcı, ${ }^{\text {c }}$ Mehmet Akkurt, ${ }^{\text {d }}$ M. Fethí Sahín ${ }^{\text {b }}$ and Dínçer Ülkü ${ }^{c}$
${ }^{\text {a }}$ Department of Physics Education, Kastamonu Education Faculty, Gazi University, 37200 Kastamonu, Turkey, ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Hipodrom, Ankara, Turkey, 'Department of Physics Engineering, Faculty of Engineering, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and ${ }^{\mathrm{d}}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey

Correspondence e-mail: aaydin@gazi.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.190$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(6-Benzoyl-2-oxo-2,3-dihydro-2-benzo-thiazol-3-yl)propanoic acid

The molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$, is nonplanar. In the propanoic acid group, the average $\mathrm{C}-\mathrm{C}$ bond length and the average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle are 1.501 (1) \AA and $110.9(3)^{\circ}$, respectively.

Comment

The title compound, (I), shows higher analgesic activity than aspirin and has an anti-inflammatory activity as good as indometacin (Dündar et al., 2003). In this study, the crystal structure of (I) has been determined by X-ray diffraction.

(I)

The atom-numbering scheme of (I) is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The lengthening of the $\mathrm{S} 1-\mathrm{C} 14$ bond distance $[1.781$ (4) \AA] versus the $\mathrm{S} 1-\mathrm{C} 10$ bond distance $[1.743$ (4) \AA] is 0.034 (3) $\AA\{\mathrm{S} 1-$ $\mathrm{C} 7=1.776$ (3) \AA and $\mathrm{S} 1-\mathrm{C} 6=1.742$ (3) \AA in methyl 3-[5-chloro-2-oxo-1.3-benzothiazol-3(2H)-yl]propanoate (Aydın et al., 2002)\}; this may be a consequence of steric interaction.

The maximum deviations from the mean plane through the benzothiazole ($\mathrm{N} 1 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{S} 1 / \mathrm{C} 14$, which is almost planar) are -0.016 (3) and 0.017 (3) \AA for N 1 and C12, respectively. The dihedral angle between the benzothiazole and the phenyl ring ($\mathrm{C} 1-\mathrm{C} 6$) is $49.2(1)^{\circ}$.

A quantum-chemical calculation was performed using the PM3 method; the charges at atoms N1, S1, O1, O2, O3 and O4 are $0.0353,0.1836,-0.2321,-0.2989,-0.2958$ and $-0.2186 \mathrm{e}^{-}$, respectively. The heat of formation of the title compound is -61.49 kcal and its total energy is -3735.42 eV . The values of the HOMO and LUMO energies are -9.19104 and -0.83799 eV , respectively. The calculated molecular dipole moment is 4.641 Debye.

Hydrogen-bonding contacts are summarized in Table 2. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Experimental

3-(6-Benzoyl-2-oxo-2-benzothiazolin-3-yl)propanenitrile (10.0 mmol) was added to an N, N-dimethylformamide-water-sulfuric acid (1:1:2) mixture (50 ml). After stirring at room temperature for 2 h , the mixture was refluxed for 4 h . The mixture, cooled to the room temperature, was poured into ice water (100 g). The resulting precipitate was filtered off by suction filtration, washed with water,

Received 18 March 2003
Accepted 1 April 2003
Online 16 April 2003

Figure 1
A displacement ellipsoid plot of the title compound with the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

View of the crystal packing and hydrogen-bond contacts (dotted lines) along the b axis.
dried and crystallized from ethanol-water (yield 75\%, m.p. 456457 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=327.35$
Monoclinic, $P 2_{1} / c$
$a=9.352(5) \AA$ 。
$b=12.921$ (5) \AA
$c=12.908$ (5) \AA
$\beta=104.370(5)^{\circ}$
$V=1511.0(12) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: refined from
$\Delta F($ Parkin et al., 1995$)$; cubic fit
to $\sin (\theta) / \lambda-24$ parameters
$T_{\min }=0.944, T_{\max }=0.966$
4283 measured reflections
2818 independent reflections

$$
D_{x}=1.439 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 37 reflections
$\theta=9.4-32.3^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

1906 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.002$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 0$
$l=0 \rightarrow 16$
3 standard reflections frequency: 120 min intensity decay: 2%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1078 P)^{2}\right. \\
& \quad+0.8574 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.190$
$S=1.06$
2818 reflections
208 parameters
H -atom parameters not refined

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C10	$1.743(4)$	$\mathrm{O} 4-\mathrm{C} 17$	$1.330(5)$
S1-C14	$1.781(4)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.384(5)$
O1-C7	$1.226(4)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.471(5)$
O2-C14	$1.213(5)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.379(5)$
O3-C17	$1.198(5)$		
			$112.2(3)$
C10-S1-C14	$91.44(16)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$125.1(3)$
C11-N1-C15	$125.3(3)$	$\mathrm{S} 1-\mathrm{C} 14-\mathrm{O} 2$	$126.0(3)$
C14-N1-C15	$118.5(3)$	$\mathrm{O} 2-\mathrm{C} 14-\mathrm{N} 1$	$108.9(2)$
C11-N1-C14	$116.2(3)$	$\mathrm{S} 1-\mathrm{C} 14-\mathrm{N} 1$	$112.2(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$119.1(3)$	$\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 16$	$111.0(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$119.5(3)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$124.4(4)$
S1-C10-C9	$128.3(2)$	$\mathrm{O} 3-\mathrm{C} 17-\mathrm{C} 16$	$112.8(3)$
S1-C10-C11	$111.3(3)$	$\mathrm{O} 4-\mathrm{C} 17-\mathrm{C} 16$	$122.8(4)$
N1-C11-C12	$127.6(3)$	$\mathrm{O} 3-\mathrm{C} 17-\mathrm{O} 4$	
			$-19.6(4)$
C14-N1-C11-C10	$1.3(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$-29.1(4)$
C15-N1-C14-O2	$-1.1(5)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$148.0(3)$
C11-N1-C15-C16	$-92.9(4)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$-166.1(3)$
C14-N1-C15-C16	$87.2(4)$	N1-C15-C16-C17	$177.9(3)$
C11-N1-C14-O2	$179.0(3)$	C15-C16-C17-O4	$-0.7(5)$
C1-C6-C7-O1	$155.0(3)$	C15-C16-C17-O3	

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 40 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.90	$2.723(4)$	176
$\mathrm{C} 1-\mathrm{H} 1 \cdots 3^{\text {ii }}$	0.93	2.54	$3.181(4)$	127
$\mathrm{C}^{\mathrm{i}} 2-\mathrm{H} 12 \cdots 1^{\text {iii }}$	0.93	2.38	$3.291(4)$	168
$\mathrm{C}^{2} 6-\mathrm{H} 16 B \cdots \mathrm{O}^{\text {iv }}$	0.97	2.59	$3.552(6)$	175

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x, 1-y, 1-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, 1-y, 1-z$.

All H atoms were placed in geometrically idealized positions, but not refined. Owing to the poor quality of the crystal, high-order reflections were very weak in intensity. The data collection was therefore stopped at $\theta_{\text {max }}=26.3^{\circ}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

organic papers

Aydın, A., Arıcı, C., Akkurt, M., Akkoç, Y. \& Şahin, M. F. (2002). Anal. Sci. 18, 1401-1402.
Dündar, Y., Okçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. \& Şahin, M. F. (2003). Arch. Pharm. In the press.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

